Indeed that was a typo.
thanks, Marv, for the eagle eyes!
The GEARFIND program on my site allows the user to specify
desired ratio
allowable maximum ratio error
number of gear pairs to consider
minimum number of gear teeth
maximum number of gear teeth
It will then find all the gear arrangements within those limits that satisfy the ratio within the allowable error and write this information to an ASCII file that can be read or printed.
As an example, we can get a bit closer to the desired 1.270000... by using two pairs of gears instead of one. I had the program look for arrangements of gears with teeth in the range 16 - 40 that would provide the ratio with an error less than 0.01%. The output looks like this...
Before someone asks, let me explain the significance of the double asterisks (**) in the program output. As the program finds a solution that satisfies the user's criteria, it checks to see if that solution is better than the best solution it has found so far. If it is, it marks it with the double asterisks. Thus, the user, when examining the file, can simply scan down to the last entry marked with the asterisks to identify the best possible solution.Code:Desired ratio = 1.27 17:18-39:29- 1.27011 (0.00905059 %) ** 17:29-39:18- 1.27011 (0.00905059 %) ** 19:17-25:22- 1.27005 (0.0042107 %) ** 19:22-25:17- 1.27005 (0.0042107 %) 22:19-34:31- 1.26995 (-0.00401053 %) ** 22:31-34:19- 1.26995 (-0.00401053 %) 25:17-19:22- 1.27005 (0.0042107 %) 25:22-19:17- 1.27005 (0.0042107 %) 25:22-38:34- 1.27005 (0.0042107 %) 25:34-38:22- 1.27005 (0.0042107 %) 26:24-34:29- 1.27011 (0.00905059 %) 26:29-34:24- 1.27011 (0.00905059 %) 30:23-37:38- 1.27002 (0.00180183 %) ** 30:38-37:23- 1.27002 (0.00180183 %) 31:28-39:34- 1.26996 (-0.00330841 %) 31:34-39:28- 1.26996 (-0.00330841 %) 34:19-22:31- 1.26995 (-0.00401053 %) 34:24-26:29- 1.27011 (0.00905059 %) 34:29-26:24- 1.27011 (0.00905059 %) 34:29-39:36- 1.27011 (0.00905059 %) 34:31-22:19- 1.26995 (-0.00401053 %) 34:36-39:29- 1.27011 (0.00905059 %) 37:23-30:38- 1.27002 (0.00180183 %) 37:38-30:23- 1.27002 (0.00180183 %) 38:22-25:34- 1.27005 (0.0042107 %) 38:34-25:22- 1.27005 (0.0042107 %) 39:18-17:29- 1.27011 (0.00905059 %) 39:28-31:34- 1.26996 (-0.00330841 %) 39:29-17:18- 1.27011 (0.00905059 %) 39:29-34:36- 1.27011 (0.00905059 %) 39:34-31:28- 1.26996 (-0.00330841 %) 39:36-34:29- 1.27011 (0.00905059 %)
Of course, if you're just making a metric bolt, you don't need better accuracy than the 47/37 combination provides. However, in situations that demand high accuracy you may want to keep this program in mind.
---
Regards, Marv
Failure is just success in progress
That looks about right - Mediocrates
DIYSwede (Dec 17, 2019)
Thanks olderdan! We've added your Metric Threading Method to our Tapping and Threading category,
as well as to your builder page: olderdan's Homemade Tools. Your receipt:
New plans added on 11/22: Click here for 2,593 plans for homemade tools.
What am I missing here?
It seems that everyone is looking for ways to avoid using a 127 tooth gear. Is there something wrong with using 127?
olderdan (Oct 1, 2017)
Couple of years ago I found small (24 kB) program 'SuperSpacer' and below is calculation for cutting 127 gears.
Tooth,Degrees,Minutes,Seconds
01, 002, 50, 04.72
02, 005, 40, 09.45
03, 008, 30, 14.17
04, 011, 20, 18.90
05, 014, 10, 23.62
06, 017, 00, 28.35
07, 019, 50, 33.07
08, 022, 40, 37.80
09, 025, 30, 42.52
10, 028, 20, 47.24
11, 031, 10, 51.97
12, 034, 00, 56.69
13, 036, 51, 01.42
14, 039, 41, 06.14
15, 042, 31, 10.87
16, 045, 21, 15.59
17, 048, 11, 20.31
18, 051, 01, 25.04
19, 053, 51, 29.76
20, 056, 41, 34.49
21, 059, 31, 39.21
22, 062, 21, 43.94
23, 065, 11, 48.66
24, 068, 01, 53.39
25, 070, 51, 58.11
26, 073, 42, 02.83
27, 076, 32, 07.56
28, 079, 22, 12.28
29, 082, 12, 17.01
30, 085, 02, 21.73
31, 087, 52, 26.46
32, 090, 42, 31.18
33, 093, 32, 35.91
34, 096, 22, 40.63
35, 099, 12, 45.35
36, 102, 02, 50.08
37, 104, 52, 54.80
38, 107, 43, -00.47
39, 110, 33, 04.25
40, 113, 23, 08.98
41, 116, 13, 13.70
42, 119, 03, 18.42
43, 121, 53, 23.15
44, 124, 43, 27.87
45, 127, 33, 32.60
46, 130, 23, 37.32
47, 133, 13, 42.05
48, 136, 03, 46.77
49, 138, 53, 51.50
50, 141, 43, 56.22
51, 144, 34, 00.94
52, 147, 24, 05.67
53, 150, 14, 10.39
54, 153, 04, 15.12
55, 155, 54, 19.84
56, 158, 44, 24.57
57, 161, 34, 29.29
58, 164, 24, 34.02
59, 167, 14, 38.74
60, 170, 04, 43.46
61, 172, 54, 48.19
62, 175, 44, 52.91
63, 178, 34, 57.64
64, 181, 25, 02.36
65, 184, 15, 07.09
66, 187, 05, 11.81
67, 189, 55, 16.53
68, 192, 45, 21.26
69, 195, 35, 25.98
70, 198, 25, 30.71
71, 201, 15, 35.43
72, 204, 05, 40.16
73, 206, 55, 44.88
74, 209, 45, 49.61
75, 212, 35, 54.33
76, 215, 26, -00.95
77, 218, 16, 03.78
78, 221, 06, 08.50
79, 223, 56, 13.23
80, 226, 46, 17.95
81, 229, 36, 22.68
82, 232, 26, 27.40
83, 235, 16, 32.13
84, 238, 06, 36.85
85, 240, 56, 41.57
86, 243, 46, 46.30
87, 246, 36, 51.02
88, 249, 26, 55.75
89, 252, 17, 00.47
90, 255, 07, 05.20
91, 257, 57, 09.92
92, 260, 47, 14.64
93, 263, 37, 19.37
94, 266, 27, 24.09
95, 269, 17, 28.82
96, 272, 07, 33.54
97, 274, 57, 38.27
98, 277, 47, 42.99
99, 280, 37, 47.72
100, 283, 27, 52.44
101, 286, 17, 57.16
102, 289, 08, 01.89
103, 291, 58, 06.61
104, 294, 48, 11.34
105, 297, 38, 16.06
106, 300, 28, 20.79
107, 303, 18, 25.51
108, 306, 08, 30.24
109, 308, 58, 34.96
110, 311, 48, 39.68
111, 314, 38, 44.41
112, 317, 28, 49.13
113, 320, 18, 53.86
114, 323, 08, 58.58
115, 325, 59, 03.31
116, 328, 49, 08.03
117, 331, 39, 12.75
118, 334, 29, 17.48
119, 337, 19, 22.20
120, 340, 09, 26.93
121, 342, 59, 31.65
122, 345, 49, 36.38
123, 348, 39, 41.10
124, 351, 29, 45.83
125, 354, 19, 50.55
126, 357, 09, 55.27
127, 360, 00, 00.00
So, if you have enough patience and decent rotary table you can do it.
Regards
LMMasterMariner
Paul Jones (Oct 5, 2017)
The ROTARY program, free from my site, will do the same thing and won't be blacklisted.
Code:Number of divisions = 127 DIVISION degdec deg min sec 0 0.0000 0 0 0 1 2.8346 2 50 5 2 5.6693 5 40 9 3 8.5039 8 30 14 4 11.3386 11 20 19 5 14.1732 14 10 24 6 17.0079 17 0 28 7 19.8425 19 50 33 8 22.6772 22 40 38 9 25.5118 25 30 43 10 28.3465 28 20 47 11 31.1811 31 10 52 12 34.0157 34 0 57 13 36.8504 36 51 1 14 39.6850 39 41 6 15 42.5197 42 31 11 16 45.3543 45 21 16 17 48.1890 48 11 20 18 51.0236 51 1 25 19 53.8583 53 51 30 20 56.6929 56 41 34 21 59.5276 59 31 39 22 62.3622 62 21 44 23 65.1969 65 11 49 24 68.0315 68 1 53 25 70.8661 70 51 58 26 73.7008 73 42 3 27 76.5354 76 32 8 28 79.3701 79 22 12 29 82.2047 82 12 17 30 85.0394 85 2 22 31 87.8740 87 52 26 32 90.7087 90 42 31 33 93.5433 93 32 36 34 96.3780 96 22 41 35 99.2126 99 12 45 36 102.0472 102 2 50 37 104.8819 104 52 55 38 107.7165 107 43 0 39 110.5512 110 33 4 40 113.3858 113 23 9 41 116.2205 116 13 14 42 119.0551 119 3 18 43 121.8898 121 53 23 44 124.7244 124 43 28 45 127.5591 127 33 33 46 130.3937 130 23 37 47 133.2283 133 13 42 48 136.0630 136 3 47 49 138.8976 138 53 51 50 141.7323 141 43 56 51 144.5669 144 34 1 52 147.4016 147 24 6 53 150.2362 150 14 10 54 153.0709 153 4 15 55 155.9055 155 54 20 56 158.7402 158 44 25 57 161.5748 161 34 29 58 164.4094 164 24 34 59 167.2441 167 14 39 60 170.0787 170 4 43 61 172.9134 172 54 48 62 175.7480 175 44 53 63 178.5827 178 34 58 64 181.4173 181 25 2 65 184.2520 184 15 7 66 187.0866 187 5 12 67 189.9213 189 55 17 68 192.7559 192 45 21 69 195.5906 195 35 26 70 198.4252 198 25 31 71 201.2598 201 15 35 72 204.0945 204 5 40 73 206.9291 206 55 45 74 209.7638 209 45 50 75 212.5984 212 35 54 76 215.4331 215 25 59 77 218.2677 218 16 4 78 221.1024 221 6 9 79 223.9370 223 56 13 80 226.7717 226 46 18 81 229.6063 229 36 23 82 232.4409 232 26 27 83 235.2756 235 16 32 84 238.1102 238 6 37 85 240.9449 240 56 42 86 243.7795 243 46 46 87 246.6142 246 36 51 88 249.4488 249 26 56 89 252.2835 252 17 0 90 255.1181 255 7 5 91 257.9528 257 57 10 92 260.7874 260 47 15 93 263.6220 263 37 19 94 266.4567 266 27 24 95 269.2913 269 17 29 96 272.1260 272 7 34 97 274.9606 274 57 38 98 277.7953 277 47 43 99 280.6299 280 37 48 100 283.4646 283 27 52 101 286.2992 286 17 57 102 289.1339 289 8 2 103 291.9685 291 58 7 104 294.8031 294 48 11 105 297.6378 297 38 16 106 300.4724 300 28 21 107 303.3071 303 18 26 108 306.1417 306 8 30 109 308.9764 308 58 35 110 311.8110 311 48 40 111 314.6457 314 38 44 112 317.4803 317 28 49 113 320.3150 320 18 54 114 323.1496 323 8 59 115 325.9843 325 59 3 116 328.8189 328 49 8 117 331.6535 331 39 13 118 334.4882 334 29 17 119 337.3228 337 19 22 120 340.1575 340 9 27 121 342.9921 342 59 32 122 345.8268 345 49 36 123 348.6614 348 39 41 124 351.4961 351 29 46 125 354.3307 354 19 51 126 357.1654 357 9 55 127 360.0000 0 0 0
---
Regards, Marv
Failure is just success in progress
That looks about right - Mediocrates
Paul Jones (Oct 5, 2017)
There are currently 1 users browsing this thread. (0 members and 1 guests)
Bookmarks